Meiotic recombination, cross-reactivity, and persistence in Plasmodium falciparum.

نویسندگان

  • F E McKenzie
  • M U Ferreira
  • J K Baird
  • G Snounou
  • W H Bossert
چکیده

We incorporate a representation of Plasmodium falciparum recombination within a discrete-event model of malaria transmission. We simulate the introduction of a new parasite genotype into a human population in which another genotype has reached equilibrium prevalence and compare the emergence and persistence of the novel recombinant forms under differing cross-reactivity relationships between the genotypes. Cross-reactivity between the parental (initial and introduced) genotypes reduces the frequency of appearance of recombinants within three years of introduction from 100% to 14%, and delays their appearance by more than a year, on average. Cross-reactivity between parental and recombinant genotypes reduces the frequency of appearance to 36% and increases the probability of recombinant extinction following appearance from 0% to 83%. When a recombinant is cross-reactive with its parental types, its probability of extinction is influenced by cross-reactivity between the parental types in the opposite manner; that is, its probability of extinction after appearance decreases. Frequencies of P. falciparum outcrossing are mediated by frequencies of mixed-genotype infections in the host population, which are in turn mediated by the structure of cross-reactivity between parasite genotypes. The three leading hypotheses about how meiosis relates to oocyst production lead to quantitative, but no qualitative, differences in these results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An integrated model of Plasmodium falciparum dynamics.

The within-host and between-host dynamics of malaria are linked in myriad ways, but most obviously by gametocytes, the parasite blood forms transmissible from human to mosquito. Gametocyte dynamics depend on those of non-transmissible blood forms, which stimulate immune responses, impeding transmission as well as within-host parasite densities. These dynamics can, in turn, influence antigenic d...

متن کامل

A biologic basis for integrated malaria control.

In a series of models of Plasmodium falciparum dynamics, spontaneous local extinctions of the parasite sometimes occurred under steady, perennial-transmission conditions. These extinctions occurred only with extremely low mosquito densities or when the parameter describing the duration of human infection-blocking immunity was at its maximum value, and, simultaneously, those describing vector su...

متن کامل

Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum.

The malaria parasite Plasmodium falciparum has a great capacity for evolutionary adaptation to evade host immunity and develop drug resistance. Current understanding of parasite evolution is impeded by the fact that a large fraction of the genome is either highly repetitive or highly variable and thus difficult to analyze using short-read sequencing technologies. Here, we describe a resource of...

متن کامل

Genotyping of C and F Regions of Plasmodium Falciparum EBA-175 in South-East of Iran

Abstract Background and Objective: The Plasmodium falciparum EBA-175, via Sialic acid dependent glycophorin A, binds to red blood cells and thus plays a critical role in cell invasion. Some part of second allele in its gene encoding in FCR-3 (Section F) and CAMP (Section C) can be found. This study aimed to determine the prevalence of Plasmodium falciparum EBA-175KD alleles in southeastern I...

متن کامل

Identification of Plasmodium falciparum DNA Repair Protein Mre11 with an Evolutionarily Conserved Nuclease Function

The eukaryotic Meiotic Recombination protein 11 (Mre11) plays pivotal roles in the DNA damage response (DDR). Specifically, Mre11 senses and signals DNA double strand breaks (DSB) and facilitates their repair through effector proteins belonging to either homologous recombination (HR) or non-homologous end joining (NHEJ) repair mechanisms. In the human malaria parasite Plasmodium falciparum, HR ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Evolution; international journal of organic evolution

دوره 55 7  شماره 

صفحات  -

تاریخ انتشار 2001